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Abstract

Existing models over-predict the thermal contact resistance of conforming rough joints at low contact pressures.

However, the applicable pressure range in some applications such as microelectronics cooling is low. A new model

is developed which is more suitable for low pressures. The effect of elastic deformations beneath the plastically

deformed microcontacts is determined by superimposing normal deformations due to self and neighboring contact

spots in an elastic half-space. A parametric study reveals that the elastic deformation effect is an important phenomenon

at low contact pressures. The model is compared with data and good agreement is observed at low contact pressures.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The continued growth in performance and function-

ality of microelectronic and avionic systems has resulted

in a significant increase in heat dissipation requirements

and presents a great challenge to thermal engineers. The

heat generated must pass through a complex network of

thermal resistances to dissipate from the junction to the

surroundings. A significant resistance in the network is

the thermal constriction/spreading resistance through

microcontacts at the interface between the package

and its heat sink. An accurate knowledge of mechanics
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserv

doi:10.1016/j.ijheatmasstransfer.2005.02.033

* Corresponding author. Tel.: +1 519 888 4567x6181; fax: +1

519 746 9141.

E-mail addresses: majid@mhtlab.uwaterloo.ca (M. Bah-

rami), mmyov@mhtlab.uwaterloo.ca (M.M. Yovanovich),

rix@ mhtlab.uwaterloo.ca (J.R. Culham).
of the contact is essential for performing the thermal

resistance analysis.

When random rough surfaces are placed in mechani-

cal contact, real contact occurs at the summit of surface

asperities which are called microcontacts. The real con-

tact area, Ar, the summation of the microcontacts, forms

a small portion of the nominal contact area, typically a

few percent of the nominal contact area.

To study the constriction/spreading resistance of

microcontacts, the joint is usually studied in a vacuum

where the heat transfer between contacting bodies oc-

curs only via conduction through microcontacts. Ther-

mal contact resistance (TCR) of conforming rough

surfaces in a vacuum is proportional to the real contact

area [1]. TCR can be decreased by reducing the rough-

ness and out-of-flatness of the surfaces before the inter-

face is formed or by increasing the contact pressure.

However, manufacturing highly finished surfaces is not

practical due to cost constraints. Also, load constraints
ed.
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Fig. 1. Effect of elastic deformation on mean separation.

Nomenclature

A area, m2

a radius of microcontacts, m

bL specimen radius, m

c1 Vickers microhardness coefficient, Pa

c2 Vickers microhardness coefficient, [–]

E Young�s modulus, Pa

E 0 effective elastic modulus, Pa

F applied load, N

Hmic microhardness, Pa

H* non-dimensional microhardness � Hmic/E
0

k thermal conductivity, W/m K

L distance between microcontacts, m

m combined mean absolute surface slope, [–]

n number of microcontacts

P apparent contact pressure, Pa

Rj thermal joint resistance, K/W

r radial position, m

x non-dimensional position � r/L

Y mean surface plane separation, m

Greek symbols

c plasticity index � Hmic/E
0m

e relative radius �
ffiffiffiffiffiffiffiffiffiffiffiffi
Ar=Aa

p
g density of microcontacts, m�2

K non-dimensional length � b2L=ðr=mÞ
k non-dimensional separation � Y =

ffiffiffi
2

p
r

r combined RMS surface roughness, m

t Poisson�s ratio
x normal elastic deformation, m

Subscripts

0 pure plastic model value

1,2 solid 1, 2

a apparent

r real

s solid, micro
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on electronic components make it unfeasible to use high

contact pressure.

Very little has been done for light pressures

<0.1 MPa, which is the applicable range for microelec-

tronics devices. Existing models such as [2,3] can accu-

rately predict TCR for moderate to high contact

pressures. Milanez et al. [4] experimentally studied low

contact pressure joints in a vacuum and showed that

the models [2,3] overestimate the TCR at low pressures.

They called this phenomenon the truncation effect and

attributed this trend to the Gaussian assumption of

the surface asperities which implies that asperities with

‘‘infinite’’ heights exist. Milanez et al. [4] proposed cor-

relations for maximum asperities heights as functions

of surface roughness.

Existing plastic models [2,3] do not consider the effect

of elastic deformations beneath the microcontacts.

These effects would be negligible if the elastic modulus

of contacting bodies were infinity and/or the distance be-

tween the neighboring microcontacts was small enough

so the elastic deformation was the same for all micro-

contacts. In reality, none of the above is true and the

elastic deflection underneath a microcontact is always

larger than the deformation outside the microcontact

area (mean plane). Mikic [5] was the first one to point

out this problem and proposed a model. However, his

model did not consider the effect of the elastic deforma-

tion of neighboring microcontacts and variation in the

effective microhardness which was reported later by

Hegazy [6]. Also Mikic did not compare his model

against experimental data.
2. Problem statement

The contact between two Gaussian rough surfaces is

modeled by the contact between a single Gaussian sur-

face, that has the combined characteristics of the two

surfaces, with a perfectly smooth surface. The combined

roughness r and surface slope m can be found from

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
1 þ r2

2

q
and m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ m2
2

q
ð1Þ

Figure 1 schematically shows the cross-section of the

contact; note that the surface slopes of asperities, m, is

exaggerated. In reality, the surface asperities can be

visualized as shallow hills and valleys. In this study

the microcontacts are assumed to deform plastically,
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reasons supporting this assumption are discussed in the

next section. Each microcontact may be visualized as a

microhardness indenter. Due to the small percentage

of real contact area, the contact stress within the micro-

contact is much larger than the compressive yield stress

of the substrate. Thus, the material under the indenter

consists of a zone of severe plastic deformation sur-

rounded by a larger zone of elastic deformation. To-

gether, these zones generate stresses that support the

force exerted by the microcontact.

Consider plastically deformed microcontacts as

loaded areas on an elastic half-space. The pressure ap-

plied on the microcontacts is the effective microhardness

of the joint, i.e., the microhardness of the softer material

in contact. As elastic deformations occur beneath the

microcontacts, mean separation between the two con-

tacting surfaces decreases, compared with the value pre-

dicted by the pure plastic model where the elastic

deformation is neglected, i.e. Y < Y0. As a result of smal-

ler separation, more microcontacts are formed which in

turn leads to a higher real contact area that is equivalent

to a lower TCR.

The goal of this study is to investigate the effect of

elastic deformations beneath the plastically deformed

microcontacts on TCR. A new model is proposed that

accounts for the elastic deformation of microcontacts

and variation of effective microhardness with mean ra-

dius of microcontacts. A novel numerical algorithm is

presented that satisfies the force balance. The present

model is also compared with experimental data. The

paper concludes with a critique of the present model

emphasizing its merits and limitations.
3. Why plastic microcontacts?

Different approaches have been taken to analyze the

deformation of asperities by assuming plastic [2], elastic

[7], or elastoplastic [8,9] regimes at microcontacts. It has

been observed through experiments that the real contact

area is proportional to the applied load [10] which indi-

cates an effective microhardness for the contact, i.e., plas-

tic deformation of microcontacts. On the other hand,

the elastic models are based on the idea that (for moving

machine parts that meet millions of times during their

life) the asperities may flow plastically at first, but they

must reach a steady-state in which the load is supported

elastically. However, if simple elastic deformation, fol-

lowing the Hertzian theory, is assumed for asperities,

the real contact area will not be linearly proportional

to the load, instead one obtains Ar / F2/3. To solve this

dilemma, Archard [11] proposed that the surface asper-

ities have microasperities and microasperities have

micro-microasperities and so on; by adding several levels

of asperities, it can be shown that Ar / F. Greenwood

and Williamson (GW) [7] developed an elastic contact
model. They proposed that as the load increases new

microcontacts are nucleated while the mean size of

microcontacts remains constant; the GW model satisfied

the observed proportionality Ar / F. As a result, an

effective elastic microhardness can be defined for elastic

models which shows that the assumption of elastic

and/or plastic deformation of asperities leads to similar

results [7,12]. Recently Greenwood and Wu [13] re-

viewed the assumptions of the GWmodel and concluded

that ‘‘the GW definition of peaks is wrong and gives a

false idea of both number and the radius of curvature

of asperities’’. Greenwood and Wu proposed to return

to the Archard idea that roughness consists of roughness

on roughness and that the contact may be plastic at light

loads but it becomes elastic at heavier loads. GW [7] also

introduced a plasticity index as a criterion for plastic

flow of microcontacts. They reported that the load has

little effect on the deformation regime. GW concluded

that except for especially smooth surfaces, the asperities

will flow plastically under the lightest loads. Persson [14]

also reported that except for polished surfaces all micro-

contacts deform plastically. Mikic [5] performed a ther-

mal analysis and proposed a plasticity index c = Hmic/

E 0m to determine the deformation mode of asperities

where the effective elastic modulus E 0 is defined as

1

E0 ¼
1� t21
E1

þ 1� t22
E2

ð2Þ

where Hmic is the effective microhardness. Mikic [5] con-

cluded that for most engineering surfaces the asperity

deformation mode is plastic. According to [5], the defor-

mation mode of asperities depends on material proper-

ties E 0, Hmic and the shape of asperities m; also it is

not a function of the applied load.

Rough surfaces appear to have power law spectral

densities. One can think of the parameters r and m as

properties of the surface. Unfortunately, their values in

practice depend on both the sampling length and the

sampling interval used in the measurement. The RMS

roughness r is virtually independent of the sampling

interval [15]. However, the surface slope m is sensitive

to sampling interval; its value tends to increase without

limit as the sampling interval is made smaller and

shorter wavelengths are included. This led to the concept

of functional filtering whereby both the sampling length

and sampling interval are chosen to be appropriate to

the particular application under consideration, see [15]

for more detail. Because of this behavior, many authors

used fractal descriptions to model rough surfaces [16].

The fractal model describes a surface as a large number

of length scales of roughness that are superimposed on

each other. According to fractal model, all contact spots

of area smaller than a critical area are in plastic defor-

mation. When load is increased, these plastically

deformed spots join to form elastic spots [16]. The con-

cept of fractal roughness has also been implemented to
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electrical [17] and thermal [18] contact resistances.

Majumdar and Tien [18] developed a TCR model based

on fractal characteristics of roughness and compared

their model with experimental data. Their model, how-

ever, over predicted the TCR data [18].

As briefly discussed above, the deformation mode of

asperities has been the focus of many studies and several

theories with different conclusions. A definitive conclu-

sion for the deformation mode of the asperities has yet

to be established. The general agreement within most

TCR applications, as supported by experimental data,

indicates a better agreement with plastic models. Bah-

rami et al. [1,19] collected more than 800 TCR data, con-

ducted by many researchers during the past 40 years,

and compared the data against a plastic model and ob-

served good agreement at moderate and high loads.

Therefore, in this study, the plastic deformation mode

of asperities is assumed.
4. Microhardness

Microhardness can vary throughout the material as

the indentation depth is increased [20]. Microhardness

depends on several parameters, mean surface roughness,

mean slope of asperities, method of surface preparation,

and applied pressure. Depending on the surface prepara-

tion, microhardness can be much greater than the bulk

hardness [6,14]. As shown in Fig. 2, microhardness de-

creases with increasing depth of the indenter until the

bulk hardness is obtained. Hegazy [6] concluded that

this increase in the plastic yield stress (microhardness)

of metals near the free surface is a result of local extreme

work hardening or some surface strengthening mecha-

nism. He proposed empirical correlations to account

for the decrease in microhardness with increasing depth

of penetration

Hmic ¼ c1ðd 0
v=7Þ

c2 ð3Þ
*
* *

*
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*
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Fig. 2. Measured hardness and microhardness, Hegazy [6].
where Hmic is the Vickers microhardness in GPa, d 0
v ¼

dv=d0 and d0 = 1 lm, dv = 7t is the Vickers indentation

diagonal in lm. The correlation coefficients c1 and c2
are determined from Vickers microhardness measure-

ments. Equation (3) is general and can also be used

for surfaces that have a constant microhardness Hmic,e

by substituting c1 = Hmic,e and c2 = 0. Song and

Yovanovich [21] proposed a correlation to calculate

Hmic as follows:

P
Hmic

¼ P
c1ð1.62r0=mÞc2

� � 1

ð1þ 0.071c2Þ ð4Þ
5. Present model

The present model assumes plastically deformed

microcontacts and considers the effect of elastic defor-

mation of the substrate on the contact parameters and

TCR. Thus, the pure plastic model is briefly introduced

in the next paragraph.

Cooper et al. (CMY) [2], based on the level-crossing

theory and using the equivalent surface approximation,

derived relationships for mean microcontact size a and

density of microcontacts g by assuming hemispherical

asperities whose heights and slopes have Gaussian distri-

butions. Later Yovanovich [3] summarized the CMY [2]

model and reported relationships for calculating the

contact parameters:

a ¼
ffiffiffi
8

p

r
r
m

� �
expðk2ÞerfcðkÞ

g ¼ 1

16

m
r

� �2 expð�2k2Þ
erfcðkÞ

ð5Þ

where k ¼ Y =
ffiffiffi
2

p
r is the dimensionless separation.

They also showed that the ratio of the real contact

area to the apparent area is related to the mean

separation

Ar

Aa

¼ P
Hmic

¼ 1

2
erfcðkÞ ð6Þ

where Hmic is the effective microhardness of the softer

material in contact and P = F/Aa is the nominal contact

pressure.

The modeled geometry of the contact is shown in

Fig. 3. Nine microcontacts, named A to I, are shown

in Fig. 3 as hatched identical circles of radius a. The

microcontacts are assumed to be arranged in a square

array where the shortest distance between neighboring

microcontacts is L. From Fig. 3, one can find the relative

radius e as

e ¼
ffiffiffiffiffi
Ar

Aa

r
¼

ffiffiffi
p

p a
L

ð7Þ
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Fig. 4. Elastic deformation beneath microcontact A, for

0 < x < e=
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.
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The normal elastic displacement of a half-space pro-

duced as a result of applying a uniform pressure distri-

bution Hmic over a circular area of radius a can be

determined from [15]

x ¼

4Hmic a
pE0 E

r
a

� �
r 6 a

4Hmic

pE0 r E
a
r

� �
� 1� a2

r2

� �
K

a
r

� �� �
r P a

8>><
>>: ð8Þ

where r is the radial location measured from the center

of the loaded area; and E(Æ) and K(Æ) are the complete

elliptic integrals of the second and the first kind, respec-

tively. The mean elastic deformation of the loaded circu-

lar area is �x ¼ 16Hmica=3pE0.

Equation (8) can be non-dimensionalized and re-

arranged in the following form:

x� ¼

effiffiffi
p

p E
ffiffiffi
p

p
x

e

� �
x 6

effiffiffi
p

p

x E
effiffiffi
p

p
x

� �
� 1� e2

px2

� �
K

effiffiffi
p

p
x

� �� �
x P

effiffiffi
p

p

8>>><
>>>:

ð9Þ

where

x ¼ 4HmicL
pE0 x� ¼ 4Hmicaffiffiffi

p
p

E0e
x� ð10Þ

and x = r/L. The relationship for the deformation out-

side the contact area, i.e., x P e=
ffiffiffi
p

p
is complex as given

in Eq. (9). The following simpler relationship can be

used to calculate the deformation of a half-space outside

the loaded area

x� ¼ 0.26 e2

x
x P

effiffiffi
p

p ð11Þ

The line AM, in Fig. 3, is chosen as a representative

(or mean plane) of the half-space to estimate the total

elastic deformations due to microcontacts A to I. The
elastic deformation of the mean plane AM can be calcu-

lated using superposition. The non-dimensional mean

elastic deformation underneath the microcontact A

due to its neighbors and itself is

x�
1 ¼

4e
3

ffiffiffi
p

p|ffl{zffl}
due toA

þ 0.52p
Z effiffiffi

p
p

0

X x
aixþ bi

dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
due to neighbors

x 6
effiffiffi
p

p

ð12Þ

where ai and bi are the constants due to changing the

location of the origin from each neighboring microcon-

tact to the center of the microcontact ‘‘A’’. Using the

same method, the mean deformation for the rest of the

mean plane AM can be expressed as:

x�
2 ¼

0.52e2

1

4
� e2

p

Z 1=2

effiffiffi
p

p

X x
aixþ bi

dx
effiffiffi
p

p 6 x 6
1

2
ð13Þ

Finally the mean elastic deformation of the mean

plane AM is determined by taking a weighted average

of x�
1 and x�

2. Figure 4 shows the mean deformation

due to microcontact A only, total mean deformation

considering the effects of neighbors, and the net elastic

displacement for the microcontact ‘‘A’’ as the relative

radius of microcontacts e varies. As expected, for small

values of e < 0.01 (relatively low contact pressure) the ef-

fects of neighboring microcontacts is small and can be

ignored. As e increases, the effect of neighboring micro-

contacts becomes more significant, also the displacement

of the mean plane increases. As a result of these two

competing trends, the net elastic deformation beneath

the microcontact ‘‘A’’ becomes smaller and eventually

the net displacement approaches zero at relatively large

loads.

A new numerical model is developed to account for

the elastic deformation beneath microcontacts and vari-



Fig. 5. Numerical algorithm used in present model.

Fig. 6. Ratio of calculated values by present model over pure

plastic model for: mean separation, mean radius of microcon-

tacts, and effective microhardness.
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ations in microhardness. The numerical algorithm used

in the present model is described below and is shown

in Fig. 5.

Cooper et al.�s (CMY) [2] relationships, Eqs. (5) and

(6) are used to calculate the mean radius a0, density g0,
relative radius e0, and mean separation of the joint k0.
Song and Yovanovich�s correlation [21], Eq. (4), is em-

ployed to estimate an effective microhardness H 0 for

the pure plastic model. The subscript 0 indicates the

pure plastic model values.

The net mean elastic deformation, xnet = x1 � xAM,

is then calculated using relative radius e0 as described in

the previous section. A new mean separation between

contacting surfaces can be found from, k ¼ k0�
xnet=

ffiffiffi
2

p
r. With new separation k, one can determine a

new density of microcontacts g from Eq. (5). Applying

a force balance, a new mean radius of microcontacts a

is determined from, a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F =pHmicAag

p
. Since the mean

radius of the microcontacts changes as the applied load

varies, microhardness will also change according to Eq.

(3). If the print area in a Vickers test is assumed to be

equal to the microcontact area, a relation between the
Vicker�s diagonal and the mean size of microcontacts

can be found as, dv ¼
ffiffiffiffiffiffi
2p

p
a. Therefore, a new effective

microhardness can be computed using the new radius

of microcontacts. This procedure continues until the dif-

ference between the new mean radius of microcontacts a

and the old one a0 becomes negligible.

The results of the above procedure are used to calcu-

late the TCR of the joint. The thermal resistance analy-

sis is based on the premise that there are n (=gAa)

identical circular microcontacts of radius a that provide

n parallel paths for thermal energy to be transferred in

the contact plane. The constriction/spreading resistance

of the joint can be determined by employing the flux

tube solution [2] as:

Rj ¼
ð1� eÞ1.5

2ksagAa

ð14Þ

where ks = 2k1k2/(k1 + k2) is the harmonic mean of ther-

mal conductivities of the contacting bodies.
6. Parametric study

The present model is run for a typical joint as the

applied load is varied over a wide range to study the

trends of the contact parameters; see Figs. 6 and 7 for

the contact input parameters of the studied joint. The

contact parameters calculated by both the present and

the pure plastic models are listed in Table 1.

Figures 6 and 7 show the ratio of the contact para-

meters as the non-dimensional pressure P/Hmic is

increased. As shown in these plots, the ratio of separa-

tions k0/k is greater than one for the entire comparison

due to elastic deformations of the substrate. As a result

of smaller separation, more microcontacts are formed

n/n0 > 1, the real contact area Ar/Ar0 is increased, thus
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thermal resistance is decreased Rj0/Rj > 1. It can be seen

that these ratios Ar/Ar0, n/n0, and Rj0/Rj decrease as the

applied load increases which indicates that the elastic

deformation effect becomes less important at higher

loads. This is consistent with the trend seen in Fig. 4.

Figure 6 shows that the ratio of microcontacts radius

a/a0 < 1 throughout the comparison. However, it should

be noted that the absolute radius of microcontacts, a, in-

creases by increasing the load, see Table 1. Therefore,

the effective microhardness Hmic decreases as the load

increases, see Fig. 2. The effective microhardness shown

in Fig. 6 is non-dimensionalized with respect to H 0 ¼
c1ð1.62r=mÞc2 which remains constant throughout the

comparison.
Table 1

Contact parameters calculated by present and pure plastic models

F(N) Pure plastic model

k0 e0 a0 (lm) g0

0.001 4.88 1.57E�06 4.76 0.03

0.01 4.63 5.47E�06 5.01 0.38

0.1 4.36 1.89E�05 5.31 4.03

1 4.07 6.45E�05 5.66 41.34

5 3.87 1.51E�04 5.94 205.94

10 3.77 2.18E�04 6.08 408.69

50 3.55 5.07E�04 6.44 1975.29

100 3.45 7.28E�04 6.61 3864.60

200 3.35 1.05E�03 6.80 7524.41

1000 3.10 2.41E�03 7.30 34627.84

2000 2.99 3.44E�03 7.55 66171.48

5000 2.84 5.51E�03 7.91 154167.2

10,000 2.71 7.85E�03 8.23 289821.9

20,000 2.59 1.12E�02 8.58 540371.2

50,000 2.42 1.78E�02 9.13 1213824
Non-dimensional joint resistances of a typical joint is

shown in Fig. 8 over a wide range of the non-dimen-

sional pressure P/Hmic. Four values of E 0 = 20, 60, 160

GPa, and 1 (pure plastic model) have been selected to

investigate the effect of elastic modulus, E 0, on TCR.

Other contact input parameters are shown in the figure

and are kept constant as the effective elastic modulus

E 0 is changed. The ratio of the effective microhardness

over the effective elastic modulus H* = Hmic/E
0 is used

to label these four curves. It can be seen that as H* ap-

proaches zero, i.e. E 0 ! 1, the present model ap-

proaches the pure plastic model and the elastic effect

vanishes. Therefore, it may be concluded that the non-

dimensional parameter H* is a measure of how impor-

tant is the elastic deformation effect. Also note that the

difference between the present model and the pure elastic

model decreases as P/Hmic (contact pressure) increases.
Present model

k e a (lm) g

4.77 2.66E�06 4.71 0.10

4.52 8.38E�06 4.65 1.03

4.25 2.65E�05 4.66 10.31

3.96 8.41E�05 4.74 100.13

3.75 1.89E�04 4.86 481.16

3.66 2.68E�04 4.93 940.72

3.43 6.03E�04 5.13 4396.62

3.33 8.57E�04 5.25 8481.07

3.23 1.22E�03 5.38 16282.06

2.97 2.76E�03 5.78 72497.73

2.86 3.93E�03 6.00 136509.5

2.70 6.27E�03 6.34 311572.4

2.58 8.95E�03 6.65 575983.1

2.45 1.28E�02 7.03 1054370

2.27 2.05E�02 7.63 2303327
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Beyond a certain pressure the difference between the

pure plastic model and the present model (three values

of E 0) becomes negligible. This is in agreement with

the observed trend in Fig. 4 which indicates that the ef-

fect of elastic deformation is more important at lighter

loads.
F ( N )

R
j

(K
/W

10-1 100 101 102 103 104
10-1

100

101

−−−−−−−−−−−−−−−−
material: SS 304
σ = 3.07 µm
m = 0.07
ks = 18.78 W/mK
E' = 112.09 GPa
c1 = 10.70 GPa
c2 = -0.37
bL = 125 mm
H* = 0.02

relative difference
(Rj0 - Rj) / Rj0
in the applied load
range is 25%.
7. Comparison with data

The present model is compared with experimental

data of Milanez et al. [4] in Figs. 9–11. They collected

three sets of data for SS 304, the surface parameters of

each test are listed in the corresponding plot. These data

sets differ only in roughness levels which are 0.72, 1.29,

and 3.07 lm. The pure plastic model is also included
F ( N )

R
j ( 

K 
/ W

 )

10-1 100 101 102 103 104
10-1

100

101

102

103

104

pure plastic model
present model
Milanez T1 data

Milanez [4] SS T1
−−−−−−−−−−−−−−−−
material: SS 304
σ = 0.72 µm
m = 0.041
ks = 18.87 W/mK
E' = 112.09 GPa
c1 = 10.7 GPa
c2 = -0.37
bL = 125 mm
H* = 0.027

relative difference
(Rj0 - Rj ) / Rj0
in the applied load
range is 50%.

Fig. 9. Comparison of present model with Milanez et al. [4]

data, test T1.
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pure plastic model
present model
Milanez T2 data

Milanez [4] SS T2
−−−−−−−−−−−−−−−
material: SS304
σ = 1.29µm
m = 0.049
ks = 19.09 W/mK
E' = 112.09 GPa
c1 = 10.7 GPa
c2 = -0.37
bL = 125 mm
H* = 0.024

relative difference
(Rj0 - Rj) / Rj0
in the applied load
range is 40%.

Fig. 10. Comparison of present model with Milanez et al. [4]

data, test T2.

Fig. 11. Comparison of present model with Milanez et al. [4]

data, test T3.
in the comparisons to better show the effect of elastic

deformation. The averaged difference between the pres-

ent model and the pure plastic model over the applied

load range is also reported in the plots. Moreover, the

non-dimensional parameter H* is shown for each set

of data where Hmic is an average value of the effective

microhardness over the comparison range. As shown

in the plots, the data of [4] show a better agreement with

the present model at relatively low loads and move to-

ward the pure plastic model at higher loads.

The present model is also compared with experimen-

tal data of Hegazy [6] in Figs. 12–14. Hegazy conducted

several experiments with four different alloys. Here,

three different materials are chosen: Zr—2.5%wt.,

Zircaloy 4, and Nickel 200. The data cover a relatively

wide range of contact input parameters: elastic modu-

lus E 0, roughness r, thermal conductivity ks, and
F ( N )

R
j  
( K

 / 
W

 )

102 103 104
10-1

100

101

pure plastic model
present model
PZN0102

Hegazy [6] PZN0102
−−−−−−−−−−−−−−−−−−−−
material: Zr-2.5%wt.
σ = 0.99 µm m = 0.083
ks = 21.3 W/mK
E' = 57.26 GPa
c1 = 5.88 GPa c2 = -0.267
bL = 125 mm
H* = 0.053

relative difference
(Rj0 - Rj) / Rj0
in the applied load
range is 30%.

Fig. 12. Comparison of present model with Hegazy [6] data,

test PZN0102.
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100

101

pure plastic model
present model
PNI0102

Hegazy [6] PNI0102
−−−−−−−−−−−−−−−−
material: Nickel 200
σ = 0.92 µm m = 0.110
ks = 75.28 W/mK
E' = 112.09 GPa
c1 = 6.3 GPa c2 = -0.264
bL = 125 mm
H* = 0.033

relative difference
(Rj0 - Rj) / Rj0
in the applied load
range is 17%.

Fig. 14. Comparison of present model with Hegazy [6] data,

test PNI0102.
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10-1

100

101

pure plastic model
present model
PZ40506

Hegazy [6] PZ40506
−−−−−−−−−−−−−−−−−−
material: Zircaloy 4
σ = 3.14 µm m = 0.129
ks = 18.6 W/mK
E' = 57.26 GPa
c1 = 3.32 GPa
c2 = -0.145
bL = 125 mm
H* = 0.038

relative difference
(Rj0 - Rj) / Rj0
in the applied load
range is 16%.

Fig. 13. Comparison of present model with Hegazy [6] data,

test PZ40506.
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microhardness coefficients c1 and c2. The material prop-

erties and surface parameters are listed in the figures.

Similar to [4] data, the data of [6] are closer to the pres-

ent model at smaller loads and move toward the pure

plastic model at larger loads.
8. Conclusion

The effect of elastic deformation of the substrate

underneath the microcontacts is studied on the TCR

of rough conforming joints in a vacuum, where the

microcontacts are assumed to deform plastically. The

present model accounts for elastic deformations of

the substrates due to self and neighboring microcontacts

using superposition of elastic deformations in a half-

space. The present model also accounts for the variation
in the effective microhardness and satisfies the force

balance.

The microcontacts are assumed as identical circles

which are arranged in a square array. Relationships

are derived for the average normal elastic deformation

of the elastic substrate beneath microcontacts. The net

elastic deformation of the microcontacts is calculated.

Using the level-crossing theory, the mean separation

between two contacting bodies is modified for the net

elastic deformation. An iterative numerical algorithm

is developed to compute the modified mean size, density,

and the contact resistance of the joint.

The trends of the present model are studied and com-

pared with the pure plastic model where the elastic defor-

mation is completely ignored. It is observed that as a

result of the elastic deformation the mean separations be-

tween two contacting surfaces becomes smaller; thus

• more microcontacts are nucleated,

• the real contact area is increased, and

• thermal contact resistance is decreased.

It is also shown that the elastic deformation effect be-

comes less important at higher loads. This is a result of

the fact that the net elastic deformation approaches zero

at relatively high loads, i.e., the elastic deformation be-

comes uniform for the entire mean plane.

A non-dimensional parameter H* = Hmic/E
0 is intro-

duced as a measure of importance of the elastic defor-

mation. As H* approaches zero (E 0 ! 1) the present

model approaches the pure plastic model. It is also

shown that for a fixed contact, the elastic effect is more

significant at smaller roughness levels.

The present model is compared against experimental

data of [4,6]. The experimental data cover a relatively

wide range of input contact parameters. The data show

a better agreement with the present model at low contact

loads. The data, however, move toward the pure plastic

model at high contact loads.

It should be noted that the present model assumes a

mean uniform size and a square distribution for micro-

contacts. As a result, the effect of elastic deformation

of the substrate is to decrease the mean separation Y be-

tween the contacting bodies which leads to an increase in

the number of microcontacts. The model, however, does

not predict any effect of clustering due to larger wave-

length components in the roughness which may occur

in some contacts. In addition, the present model tends

to under predict TCR for moderate to high contact

pressures.
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